8 research outputs found

    Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination.

    Get PDF
    The efficiency of central nervous system remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study, we show that expression of genes involved in the retinoid X receptor pathway are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages using a combination of in vivo and in vitro approaches. Disruption of retinoid X receptor function in young macrophages, using the antagonist HX531, mimics ageing by reducing myelin debris uptake. Macrophage-specific RXRα (Rxra) knockout mice revealed that loss of function in young mice caused delayed myelin debris uptake and slowed remyelination after experimentally-induced demyelination. Alternatively, retinoid X receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in multiple sclerosis patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. These results reveal the retinoid X receptor pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.This work was supported by grants from the UK Multiple Sclerosis Society, Wellcome-Trust, NINDS/NIH Intramural Research Program, Health Research Board Scholars Program, Gates-Cambridge Scholarship, and Spanish Ministry of Economy and Competitiveness (SAF2012- 31483).S

    Retinoid X Receptor activation reverses age-related deficiencies in myelin debris phagocytosis and CNS remyelination

    Get PDF
    Remyelination is a regenerative process that occurs through the formation of myelin sheaths by oligodendrocytes, which are recruited as oligodendrocyte progenitor cells (OPCs) after demyelination in diseases such as Multiple Sclerosis (MS).A key environmental factor regulating OPC differentiation is the fate of myelin debris generated during demyelination. Myelin debris contains inhibitors of OPC differentiation and thus its clearance by phagocytic macrophages is an important component of creating a lesion environment conducive to remyelination. The efficiency of debris clearance declines with age, contributing to the age-associated decline in remyelination. Therefore, understanding the mechanisms of the age-related decline in myelin debris phagocytosis is important for devising means to therapeutically reverse the decline in remyelination. The aim of this study was to determine the functional/molecular differences between young and old phagocytes involved in myelin debris clearance, thereby identifying therapeutically modifiable pathways associated with efficient myelin debris phagocytosis. In this study, we show that expression of genes involved in the retinoid X receptor (RXR) and peroxisome proliferator-activated receptor (PPAR) pathways are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages. Disruption of RXR and PPAR using synthetic antagonists in young macrophages mimics ageing by reducing myelin debris uptake. Macrophage-specific RXRα knockout mice revealed that loss of RXR function in young mice caused delayed myelin debris uptake and slowed remyelination. Alternatively, receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The FDA-approved agonists bexarotene and pioglitazone, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profiles in MS patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. Activation of these pathways also enhances immunoregulatory markers on monocytes from MS patients, further suggesting the regeneration-promoting capacity of activating these pathways in phagocytes. These results reveal the RXR/PPAR pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.This work was supported by the Gates-Cambridge Scholarship and NIH-Cambridge Partnership Progra

    The Effects of Imprinting and Repeated Seasonal Influenza Vaccination on Adaptive Immunity after Influenza Vaccination

    No full text
    (1) Background: The influenza virus continues to cause significant annual morbidity and mortality. The overall efficacy of seasonal influenza vaccination is suboptimal, which is partly due to host immune factors. The effects of imprinting and repeated seasonal influenza vaccination were investigated to assess for immune factors and mechanisms that impact influenza vaccine responses. (2) Methods: Twenty participants were enrolled into a prospective pilot study based on birth cohort and seasonal influenza immunization history. Immunologic parameters were assessed over a six-month period after the seasonal influenza vaccine was administered. (3) Results: There was no significant imprinting effect, as measured by hemagglutination inhibition (HAI) fold change, HAI geometric mean titer (GMT) for Day 29 or Day 180 post-vaccination and antigen- specific antibody-secreting cells (ASC) for Day 8 post-vaccination. Individuals who had minimal prior seasonal influenza vaccination had a higher magnitude ASC response and a higher HAI fold change post-vaccination than individuals who were repeatedly vaccinated. (4) Conclusions: Repeated seasonal influenza vaccination resulted in a decreased fold change of the immune response, although individuals in this cohort tended to have high HAI titers at baseline that persisted after vaccination. Imprinting effects were not observed in this cohort. These host immune factors should be considered in the development of universal influenza vaccines. ClinicalTrials.gov Identifier: NCT03686514

    Pre-Existing Dengue Immunity Drives a DENV-Biased Plasmablast Response in ZIKV-Infected Patient

    No full text
    The re-emergence of Zika virus (ZIKV) in the western hemisphere has most significantly affected dengue virus (DENV) endemic regions. Due to the geographical overlap between these two closely related flaviviruses, numerous individuals who suffered ZIKV infection during recent outbreaks may have also previously been exposed to DENV. As such, the impact of pre-existing dengue immunity on immune responses to ZIKV has been an area of focused research and interest. To understand how B cell responses to a ZIKV infection may be modulated by prior dengue exposures, we compared and contrasted plasmablast repertoire and specificity between two ZIKV-infected individuals, one dengue-naïve (ZK018) and the other dengue-experienced (ZK016). In addition to examining serological responses, we generated 59 patient plasmablast-derived monoclonal antibodies (mAbs) to define the heterogeneity of the early B cell response to ZIKV. Both donors experienced robust ZIKV-induced plasmablast expansions early after infection, with comparable mutational frequencies in their antibody variable genes. However, notable differences were observed in plasmablast clonality and functional reactivity. Plasmablasts from the dengue-experienced donor ZK016 included cells with shared clonal origin, while ZK018 mAbs were entirely clonally unrelated. Both at the mAb and plasma level, ZK016 antibodies displayed extensive cross-reactivity to DENV1-4, and preferentially neutralized DENV compared to ZIKV. In contrast, the neutralization activity of ZK018 mAbs was primarily directed towards ZIKV, and fewer mAbs from this donor were cross-reactive, with the cross-reactive phenotype largely limited to fusion loop-specific mAbs. ZK016 antibodies caused greater enhancement of DENV2 infection of FcRγ-expressing cells overall compared to ZK018, with a striking difference at the plasma level. Taken together, these data strongly suggest that the breadth and protective capacity of the initial antibody responses after ZIKV infection may depend on the dengue immune status of the individual. These findings have implications for vaccine design, given the likelihood that future epidemics will involve both dengue-experienced and naïve populations

    The Effect of Anticoagulants, Temperature, and Time on the Human Plasma Metabolome and Lipidome from Healthy Donors as Determined by Liquid Chromatography-Mass Spectrometry

    No full text
    Liquid-chromatography mass spectrometry is commonly used to identify and quantify metabolites from biological samples to gain insight into human physiology and pathology. Metabolites and their abundance in biological samples are labile and sensitive to variations in collection conditions, handling and processing. Variations in sample handling could influence metabolite levels in ways not related to biology, ultimately leading to the misinterpretation of results. For example, anticoagulants and preservatives modulate enzyme activity and metabolite oxidization. Temperature may alter both enzymatic and non-enzymatic chemistry. The potential for variation induced by collection conditions is particularly important when samples are collected in remote locations without immediate access to specimen processing. Data are needed regarding the variation introduced by clinical sample collection processes to avoid introducing artifact biases. In this study, we used metabolomics and lipidomics approaches paired with univariate and multivariate statistical analyses to assess the effects of anticoagulant, temperature, and time on healthy human plasma samples collected to provide guidelines on sample collection, handling, and processing for vaccinology. Principal component analyses demonstrated clustering by sample collection procedure and that anticoagulant type had the greatest effect on sample metabolite variation. Lipids such as glycerophospholipids, acylcarnitines, sphingolipids, diacylglycerols, triacylglycerols, and cholesteryl esters are significantly affected by anticoagulant type as are amino acids such as aspartate, histidine, and glutamine. Most plasma metabolites and lipids were unaffected by storage time and temperature. Based on this study, we recommend samples be collected using a single anticoagulant (preferably EDTA) with sample processing at <24 h at 4 °C

    Systems Vaccinology for a Live Attenuated Tularemia Vaccine Reveals Unique Transcriptional Signatures That Predict Humoral and Cellular Immune Responses

    No full text
    Background: Tularemia is a potential biological weapon due to its high infectivity and ease of dissemination. This study aimed to characterize the innate and adaptive responses induced by two different lots of a live attenuated tularemia vaccine and compare them to other well-characterized viral vaccine immune responses. Methods: Microarray analyses were performed on human peripheral blood mononuclear cells (PBMCs) to determine changes in transcriptional activity that correlated with changes detected by cellular phenotyping, cytokine signaling, and serological assays. Transcriptional profiles after tularemia vaccination were compared with yellow fever [YF-17D], inactivated [TIV], and live attenuated [LAIV] influenza. Results: Tularemia vaccine lots produced strong innate immune responses by Day 2 after vaccination, with an increase in monocytes, NK cells, and cytokine signaling. T cell responses peaked at Day 14. Changes in gene expression, including upregulation of STAT1, GBP1, and IFIT2, predicted tularemia-specific antibody responses. Changes in CCL20 expression positively correlated with peak CD8+ T cell responses, but negatively correlated with peak CD4+ T cell activation. Tularemia vaccines elicited gene expression signatures similar to other replicating vaccines, inducing early upregulation of interferon-inducible genes. Conclusions: A systems vaccinology approach identified that tularemia vaccines induce a strong innate immune response early after vaccination, similar to the response seen after well-studied viral vaccines, and produce unique transcriptional signatures that are strongly correlated to the induction of T cell and antibody responses

    Proteomic Analysis of Human Immune Responses to Live-Attenuated Tularemia Vaccine

    No full text
    Francisella tularensis (F. tularensis) is an intracellular pathogen that causes a potentially debilitating febrile illness known as tularemia. F. tularensis can be spread by aerosol transmission and cause fatal pneumonic tularemia. If untreated, mortality rates can be as high as 30%. To study the host responses to a live-attenuated tularemia vaccine, peripheral blood mononuclear cell (PBMC) samples were assayed from 10 subjects collected pre- and post-vaccination, using both the 2D-DIGE/MALDI-MS/MS and LC-MS/MS approaches. Protein expression related to antigen processing and presentation, inflammation (PPARγ nuclear receptor), phagocytosis, and gram-negative bacterial infection was enriched at Day 7 and/or Day 14. Protein candidates that could be used to predict human immune responses were identified by evaluating the correlation between proteome changes and humoral and cellular immune responses. Consistent with the proteomics data, parallel transcriptomics data showed that MHC class I and class II-related signals important for protein processing and antigen presentation were up-regulated, further confirming the proteomic results. These findings provide new biological insights that can be built upon in future clinical studies, using live attenuated strains as immunogens, including their potential use as surrogates of protection

    Transcriptomic and Metabolic Responses to a Live-Attenuated Francisella tularensis Vaccine

    No full text
    The immune response to live-attenuated Francisella tularensis vaccine and its host evasion mechanisms are incompletely understood. Using RNA-Seq and LC–MS on samples collected pre-vaccination and at days 1, 2, 7, and 14 post-vaccination, we identified differentially expressed genes in PBMCs, metabolites in serum, enriched pathways, and metabolites that correlated with T cell and B cell responses, or gene expression modules. While an early activation of interferon α/β signaling was observed, several innate immune signaling pathways including TLR, TNF, NF-κB, and NOD-like receptor signaling and key inflammatory cytokines such as Il-1α, Il-1β, and TNF typically activated following infection were suppressed. The NF-κB pathway was the most impacted and the likely route of attack. Plasma cells, immunoglobulin, and B cell signatures were evident by day 7. MHC I antigen presentation was more actively up-regulated first followed by MHC II which coincided with the emergence of humoral immune signatures. Metabolomics analysis showed that glycolysis and TCA cycle-related metabolites were perturbed including a decline in pyruvate. Correlation networks that provide hypotheses on the interplay between changes in innate immune, T cell, and B cell gene expression signatures and metabolites are provided. Results demonstrate the utility of transcriptomics and metabolomics for better understanding molecular mechanisms of vaccine response and potential host–pathogen interactions
    corecore